How Can an Industrial Robot Be Calibrated?

Posted by Ahmed Joubair, Eng. Ph.D. on Nov 16, 2014 7:14:00 AM

Robot manufacturers claim to have a given accuracy and repeatability. Although, all of these specifications can only work when a proper calibration has been done on the robot. The calibration process for industrial robots is composed of four main steps:

Read More

Topics: robotic arm, robotics how to, robot manufacturers

Robot Force Torque Sensor - How does it work?

Posted by Mathieu Bélanger-Barrette on Sep 12, 2014 2:00:00 AM

We recently release an article on ''What is a Force-Torque Sensor''. Now that you know what a FT sensor is, we thought that you might be interested in the basics of how these devices work.

Read More

Topics: force-torque sensor, industrial robot, robotics how to, force control

What Are The Differences Between Ethernet and Ethernet/IP ?

Posted by Samuel Bouchard on Aug 17, 2014 11:43:00 AM

The following article is written to clarify the confusion between Ethernet and Ethernet/IP. First, if you do not know what the link, network and application layers of the OSI model are, I suggest you read our earlier blogposts on communication protocol structure and on industrial protocols used in robotics.

Read More

Topics: industrial robotics, robotics how to, industrial communication protocol, protocol, ethernet, ethernet IP, ethernet protocols, 802.3 IEEE

Robotic Gripper Repeatability Definition and Measurement

Posted by Samuel Bouchard on Jul 8, 2014 9:29:00 AM

On any robotic gripper spec sheet, you will find a measure of the repeatability. What does that term really mean? This blog begins by introducing the repeatability ISO standard used for robot arms, and then explains how gripper repeatability is usually measured in industrial scenarios. As you will see, there is no standard for testing repeatability of robotic grippers, so engineers must ask questions to understand what the repeatability value on a spec sheet really means.

Read More

Topics: gripper, industrial robotics, robotics, robotics how to, repeatability, ISO, accuracy

Teaching Welding Robots by Demonstration - Kinetiq Teaching

Posted by Olivier Grenier-Lafond on Jun 30, 2014 9:00:00 AM

Programming a robotic welding cell has never been easier with our newest How–to video showing Kinetiq Teaching, a new technology to quickly and easily task welding robots without requiring in-depth programming knowledge. This visual approach takes you step by step through the programming of a linear welding path for welding automation.

Read More

Topics: welding, kinetiq teaching, high mix low volume, welding automation, robot welder, robotic welding, robotics how to, welding applications

How Do Fingers on the 2-Finger 85 Adaptive Gripper Work?

Posted by Louis-Alexis Demers on May 18, 2014 2:24:00 PM

When watching how the 2-Finger Adaptive Robot Gripper works in the following video you might ask yourself; how this Gripper can be so versatile while using only one actuator? The secret lies in its unique mechanical architecture.

Read More

Topics: industrial robotics, robot gripper, robotics how to, adaptive gripper, robotic gripper, electric gripper, Robotiq, 2-finger gripper, mechanical intelligence, robot, servo electric gripper, underactuation

What Are The Communication Protocols Used In Industrial Robotics?

Posted by Samuel Bouchard on May 13, 2014 3:39:00 PM

Communication protocols, often called Fieldbus, describe the set of rules to be used in communication between devices. The list of protocols used in today’s industrial robotics is quite large; here is a list of the main protocols and their characteristics.

Read More

Topics: industrial robotics, robotics how to, programming

What is the difference between Ethernet/IP and TCP/IP?

Posted by Nicolas Lauzier on Feb 8, 2014 8:44:00 PM

When it comes to the industrial protocols that we support here at Robotiq, one of the most frequent questions that gets asked is certainly: what is the difference between Ethernet/IP and TCP/IP? Indeed, for a person unfamiliar with this subject, this can be quite confusing. In our daily lives, when we connect a PC to a network, we need to plug a cable into an ethernet card. However, to access the web, we have to configure our TCP/IP settings. And what does IP stands for again? Well, good question because the answer is: it depends! Let's take a few minutes to demystify all of this.

Read More

Topics: industrial robotics, robotics how to, modbus TCP/IP, ethernet, ethernet IP, ethernet protocols, 802.3 IEEE

How to Guide for Installing Electric Gripper on ABB Robot

Posted by Guillaume Robert on Apr 10, 2013 10:36:00 AM

Read More

Topics: robotics how to, 3-Finger Adaptive Gripper, ABB, DeviceNET

How to Verify Gripper Contact

Posted by Nicolas Lauzier on May 28, 2012 8:00:00 AM

Both of our Adaptive Grippers are able to grip objects of various shapes using their innovative finger mechanism. This allows for firm grips of various objects without the need to build custom grippers for each application. In addition to this adaptability, the Gripper is able to determine when it has gripped an object. This is useful to determine if the pick-up procedure was performed correctly and if the robot can move to the next step of its program. In some cases, however, it is also useful to verify if the Gripper still has the object after a motion is executed by the robot. For example, if the object position was not initially determined accurately (for instance, if the object has moved or if the vision system had a problem), it is possible that the object could be picked up in an awkward position. In this situation, the object might slip out of the Gripper if the robot moves very rapidly to its next position. Knowing that the object was dropped is crucial for many applications. So below, I will explain the appropriate procedure to verify if the Adaptive Gripper still has the object after a robot motion.

How the object is detected during the grip

When a command is sent to close the fingers of the Gripper, the motor moves towards a target position. If the motion is stopped because the Gripper has found an object, the force applied by the fingers will increase until the current sent to the motor exceeds its limit (which is fixed using the force parameter). At that moment, the motor will stop moving and the grip force will be maintained by the Gripper's auto-locking mechanism. By reading the motor position, the Gripper is able to determine if an object was gripped or if the motion was stopped due to the fingers touching themselves. However, from that moment, the Gripper will consider that the object is gripped and will not detect an object loss unless the procedure explained in the next section is executed.

Read More

Topics: robotics how to, adaptive gripper, robotic gripper, robot gripper feedback, object detection, programming, robotic industrial application