In March 2012, the Performance Metrics for Intelligent Systems (PerMIS'12) Workshop was held at the University of Maryland. During this event, hosted by the National Institute of Standards and Technology (NIST), a panel discussion focused on a very interesting topic: Technology Readiness for Randomized Bin Picking. In this article, I would like to highlights some of the interesting points that were discussed by the panel. All the information presented here is from a report about the panel discussion published by NIST members (see reference at the end of this article).
Robot performing bin-picking (image from youtube user stefanovkrll)
Randomized bin picking is one of the greatest challenges to automated manufacturing today. Basically, a robot has to locate and grasp objects that have been placed randomly in a container. The robot then moves the grasped object to the next manufacturing cell. Having the parts presented in a random way has enormous advantages as it removes the need for specifically designed parts handling systems. This is especially true if there are various parts to be handled by the same robot. Ideally, a standard robot (with a standard gripper and vision system) would be able to be used for different applications with only minor software modifications.
Randomized bin picking is far from being a solved problem as many challenges remain, mostly related to:
The report explains the potential metrics that could be used to evaluate a solution for randomized bin picking applications. The first one is speed, which is defined as: the time required to pick an object in the bin or the numbers of object which can be picked for a given amount of time. The second one is efficiency, which is a mixture of time efficiency (time required to locate the object vs cycle time), grasping quality and percentage of success. The third one is accuracy, which is the measurement of error in object recognition and part pose estimation.
The authors of the report also present the Technology Readiness Level (TRL), which is a process originally used by NASA to evaluate if a given technology is reliable enough to be used in the field. Basically, the TRL of a technology tells the level of qualification of the solution (a TRL of 1 corresponds to the basic principles being observed whereas a TRL of 9 is equivalent to a fully functional system proven by vetting). The authors explain how this scale could be modified to be applied to manufacturing applications such as randomized bin picking.
The most interesting part of the report (in my opinion) is the description of the panel discussion itself, in which the panelists identified several aspects specific to randomized bin picking. Here are some highlights of this discussion:
Grippers are only one component of a randomized bin picking solution. However, as it was explained by the authors of the report, there are numerous advantages of having standard hardware components which are effective in various applications. A gripper which can adapt to objects of various shapes (such as our 2-Finger Adaptive Robot Gripper) is therefore very interesting for randomized bin picking!
In conclusion, lets just say that randomized bin picking is another sub-field of robotics which is craving new ideas that have the potential to improve efficiency in a number of manufacturing processes. Lets hope that someone will seize these opportunities!
Thanks for reading!