Subscribe

Latest Blog Post

New Call-to-action

What Is the Sensitivity of Our Force Torque Sensors?

Mathieu Bélanger-Barrette
by Mathieu Bélanger-Barrette on Jul 11, 2016 7:00:00 AM

A robotic application is sometimes synonymous of precision and repeatability. In order to achieve so, you need to buy devices that have a certain level of repeatability and consistency to make sure everything works fine once it is installed. We usually recommend our FT 300 Force Torque Sensor in assembly application because it can compensate the defect in all of the robot/Gripper joints. However, what is the repeatability of this device?

_MG_0153_decoupe_crop.jpg

First of all, you need to know that both of our FT sensors (FT-150 and FT-300) are immune to external noise. Which means the reading of the sensor will not be different if your CNC machine is running or not or even worst if your welding robot is working or not.

Also, all 3 axes are separated from each other. In fact, this is not a strain gage that deforms in every direction and estimates the X-Y-Z deformation. It is a sensitive technology with 4 sensors per axis.

That being said, what you really want to look at in a FT sensor is the noise or sensibility of the sensor in both force and movements.

Our FT-300 sensor, the signal noise (or sensibility) in X and Y direction is 3.6N and 1.5 in Z direction. What it means is that the sensor can sense a force down to 3.6 N: Approximately 360g in the X-Y direction and down to 150g in the Z direction. That is pretty sensitive. Since the sensor can feel forces from -300N to +300N you can expect the same range of repeatability (1.5N and 3.6N) wherever in this range.

In terms of torques, a simple mathematical representation is used to calculate the moment around the 3 axes. In fact, a combination of all Force Sensors and knowing the distance between them is enough to calculate the torque on the sensor. This means that the sensor will pretty much have the same noise range in torques. In fact, the torque signal noise is 0.06N.m for the X-Y axes and 0.09N.m for the Z-axis.

Perhaps, our FT-150 is still much more sensitive in the X-Y axes with a 1.5N signal noise in force and 0.09 N.m in torque. So if you need a very delicate application, you should go for the FT-150 even though it has a smaller reading range and has a more bulky look.

Hopefully this helped you figure out which sensor was the best for you. If you need more information on the different sensors out there, read the following eBook .

Force Sensors in Robotics Research: The Essential Guide

 
x

Subscribe to Robotiq's Blog

Leave a comment

Mathieu Bélanger-Barrette
Mathieu works as the production engineer at Robotiq, where he strives to constantly optimize the production line for Robotiq Grippers. Mathieu is always looking for new manufacturing processes to make operators as efficient as possible. He is also seeking out new robotic applications and their effect on improving our world, then keeps Robotiq’s blog readers updated on his finds.
Connect with the writer:

Related posts

What's the Difference Between Digital and Analog I/O?

Analog and Digital I/O is a fundamental concept in robotics. What is the difference between them? We answer a question from the...

Alex Owen-Hill
By Alex Owen-Hill - June 14, 2017
New Updates to Improve Your Wrist Camera's Speed and Accuracy

What's trending on DoF this week? Our new Wrist Camera URCap is now two times faster with our latest performance updates. We...

Amanda Lee
By Amanda Lee - June 8, 2017
Share Your Programming Hacks on Universal Robots

What's trending on DoF this week? Handy helper functions for UR, new teaching method sneak peek, Parker automation controller,...

Amanda Lee
By Amanda Lee - June 1, 2017

Robotic grinding, polishing, sanding, deburring and finishing applications growth

In the future, robotic grinding, polishing, sanding, deburring and finishing applications will be as big as robotic welding. Read more

Using 2 finger gripper attached to UR10 through ROS

Hello,We have a robot UR10 with a 2 finger gripper connected to the Robot controller through one of the USB port. We can manage to control the robot using the modern driver and ROS on another network...Read more

ROS Configuration for the C-Gripper

Hello,We have a problem with the communication with a robotiq gripper using ROS. I will explain the problem with more detail to check if you can help us.We have a robot UR10 with a C-model Gripper (2...Read more

How can I make a UR5 draw arcs and circles?

Hi!I want to make the UR5 make draw random lines, arcs and circles on a piece of paper. My approach for that so far was to generate the geometry in Processing (Java for creatives..) and send points...Read more